
Fermi National Accelerator Laboratory

Software Development for a Switch-based Data Acquisition
System

A. Booth*, D. Black and D. Walsh

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

*SSC Laboratory
2550 Beckleymeade Ave., Dallas, Texas

December 1991

* Presented at the IEEE Nuclear Science Symposium, Santa Fe, New Mexico, November 2-9, 1991.

$ Operated by Unlverrltiea Research Assoclaflon Inc. under CMltracf No. DE-ACOZ-76CHC3000 with the United States Department of Energy

. Dmdaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefullness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, OP otherwise, does not necessarily
constitute or imply its endorsement, recommendation. or favoring by the United States
Government OP any agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof

Software Development for P Switch-based Data Acquisition System

Alexaodcr Booth’, Dennis Black & Don Walsh
Fermi National Accelerator Laboratory**

Abstract

We report on the software aspects of the development
of a switch-based data acauisition svstem at Fermilab. Tkis
paper describes how. with the goal of providing an
“integrated systems engineering” environment. several
powerful software tools were put in place to facilitate
extensive exploration of all aspects of the design. These
t&s include a simulation package, graphics package and an
Expert System shell which have been integrated to provide
an environment which encourages the close interaction of
hardware and software engineers. This paper includes a
description of the simulation, user interface, embedded
software, remote procedure calls, and diagnostic software
which together have enabled us to provide real-time control
and monitoring of a working prototype switch-based data
acquisition (DAQ) system. The prototype DAQ system is
capable of running at 600Hz of current CDF events
@OKbytes). and comprises several VME Sun 1E boards,
as well as the switch backplane and auxiliary components.

1.0 Introduction

With the ever-increasing complexity of detectors and
their associated data acquisition systems, it is important to
bring together a set of tools to enable system designers,
both hardware and software, to understand the behavioral
aspects of the system as a whole, as well as the interaction
between different functional units within the system. For
complex systems, human intuition is inadequate since there
are simply too many variables for system designers to
begin to predict how varying any subset of them affects the
total system. On the other hand, exact analysis, even to the
extent of investing in disposable hardware prototypes, is
much too time consuming and costly. Simulation bridges
the gap between physical intuition and exact analysis by
providing a learning vehicle in which the effects of varying
many parameters can be analyzed and understood.
Simulation techniques have been used in the development
of the Scalable Parallel Open Architecture Data Acquisition
System at Fermilab. This paper describes the work
undertaken at Fermilab in which several sophisticated to&
have been brought together to provide an integrated systems
engineering environment specifically aimed at designing
DAQ systems.

At Fermilab, the Scalable Parallel Open Architecture Data
Acquisition System [l] project was directed at addressing

* Now with the Superconducting Super Collider
**This work performed under the auspices of the United

States Department of Energy.

the needs of future High Energy Physics (HEP)
Experiments which require much greater bandwidth than
those of previous era’s, A protoypc data acquisition system
(figure 1) has been implemented. It consists of eight test
transmitters (which emulate the front end electronics) and
transmit their data to eight Input Time Slot Interchangers
(TSI). which buffer the data before feeding it into the
switch. Eight Output TSI’s receive data in parallel from
the switch and send complete events onto a farm of
processors (emulated by the output TX’s in the prototype
system).

* ,“T$

Eitwe ’ prntotvoe
From the outset of the project a goal was to provide an

integrated systems engineering environment in which
hardware and sofhvare development could proceed in parallel
and actually complement one another. To achieve this, it
was necessary to bring together a set of tools which would
not only allow extensive exploration of all aspects of the
design, but also provide building blocks that encourage the
close interaction of software and hardware engineers. This
approach had the advantage that valuable information was
constantly being communicated between hardware and
software groups during the development process.

The powerful tools which were set in place included a
digital logic simulator and Computer Hardware

Description Language (CHDL), a high-speed graphics
package and a knowledge-based expert inference system, all
running on a powerful work station. Figure 2 shows how
their integration was viewed fmm the developer and the
user. Although all of these tools are very useful when used
in isolation, their combined effect is even more powerful
and versatile. For example, in order to configure. download,
monitor and diagnose the “model” of the data acquisition
system. a user interface was developed which
accommodated these functions in a very friendly way. The
requirements of this interface were in many cases identical
to those of downloading. monitoring, and diagnosing the
data acquisition system of an actual physics experiment. If
the model is an accurate representation of the actual system,
then everything that a user would like to do to the system,
he would also like to do to the model. Therefore, as the
model was developed, the actual software used to help run
the experiment was also developed in parallel in an
integrated fashion, thereby providing a universal interface
accomodating the model and the “real” system.

USER ENVIRONMENT

DEVELOPMENT ENVIRONMENT

Another example of integrated systems engineering is
the development of system diagnostics and their integration
into the hardware design during the simulation process.
Good systems diagnostics are crucial for minimizing
downtime in a running experiment. In order to diagnose
something, it helps to understand it. Before any hardware
was actually built, diagnostic strategies were being
designed and tested.

2.0 Tools

2.1 Verilog

The fust tool we chose was Veriolog -XL [31, which is
a digital logic simulator based on the computer hardware
description language Verilog -HDL. It provides advanced
simulation capabilities designed to handle complex
electronic designs. It has many features which can be
summarized as follows:-

(i) Different levels of abstraction;
system/architectural, behavioraValgorithmic
register transfer. gate/circuit

(ii) Mixed level modeling
(iii) Stochastic analysis
(iv) Interactive debugging environment
(v) Open Design Envimnmenr library support,

programming language interface (C. etc.)

These features make Verilog very useful for modeling
data acquisition systems, even those which include multiple
ASI0 and complex VLSI devices. Verilog has already
been used successfully in the HBP community [4]. Verilog
provides three kinds of graphical display; fmstly a logic
analyzer type display which is very useful for low level
debugging. secondly a register display where the
programmer can display tbe value of any variable or register
in his HDL code, and thirdly a bar graph display for
showing such things as queue occupancy and owflows in
the stochastic/queue management type modeling.

2.2 DataViews

The next tool we chose was Dataviews [5], which is a
powerful graphical design environment for developing
custom color displays for real-time monitoring and control.
This is a very important aspect of the Scalable Parallel
open Architecture Data Acquisition System; that the “User
Interface” be state-of-the an. Dataviews is written in C and
runs on most 32-bit workstations. It comprises two main
componenta: a powerful drawing editor called DVdraw, and
a comprehensive set of utilities called DVtools. DVdraw
enables users to create and modify color pictures, and in OUT
case these were system type diagrams of our user interface
as wells as menu driven displays for user interaction.

DVtools allows the user to specify the dynamic
interactions of all components on each screen and between
screens, as well as how to integrate the displays into user
application programs. We have also used Dataviews to
“front-end” Verilog, so that the infrequent user of Verilog
can come along and set up parameters for a simulation mn
in a user friendly way, without having to know Verilog
HDLcode.

2.3 Nexpert

The third tool we chose was Nexpert [6] which is a
powerful “knowledge representation and reasoning” system.
It includes a rule and “object-oriented” expert system she11

and was particulary attractive to us for three reasons; frstIy
it meets some goals we have in terms of diagnosing data
acquisition systems, secondly it includes a unified database
bridge which interfaces to a variety of database packages,
and thirdly it has a software bridge to Dataviews. This last
feature was very attractive to us since the bi-directional
relationship between Nexpert and Dataviews means that by
clicking on buttons on a Dataviews “view”. rules fire which
can cause for example, other programs to be invoked (such
as reading status registers in the DAQ system), and even
other “views” to be displayed (such as a lower level in the
DAQ system).

3.0 Software Development

With the tools in place, there were five main areas of
software development; simulation, diagnostics, embedded
ccde,usw interface and remote procedure calls.

The software effort was completely done on a SUN OS
4.0.3 based platform. The main programming language was
C with a small amount of spare assembler code. The
following tools provided by SUN were also used; compiler,
linker, “vi” text editor, dbx source level debugger.and the
rpc generator utility(rpcgen). The amount of code generated
was approximately 5oooO lines and is broken down into the
following main areas:

a. user interface, DVTOOLS programs. not views
(2OCW lines)

b. simulation code - various models (looo0)
c. embedded code, for all modules (4COO lines)
d. rpc ,server and client calls (1201X1 lines)
e. diagnostic software - consisted of some code already

accounted f0r.i.e. status,rpc. a general number for
the decision trees was (2000 lines)
(this was only implemented to a very small degree).

f. code to generate look up tables etc. (Zoo0 lines)

The SUN OS has the facility to generate the remote
procedure calls easily through the use of the rpcgen utility.
This facility allowed us to write the user programs that
were to be activated over the network without having to
worry about the network pmtccol or operations.

3.1 Modeling & Simulation

The purpose of writing models and simulating the
switch-based Scalable Parallel Open Architecture Data
Acquisition System was to provide a learning vehicle
whereby the system designers could experiment with
different architectures and control mechanisms to enable
them to better understand DAQ design. An improved
understanding simplifies decisions such as which operation
mode provides for highest throughput, what extra
electronics and software should be. implemented to more
efficiently diagnose failures and fix problems, etc.
Modeling and system simulations assist system designers
in determining throughput for different configurations,
identifying potential bottlenecks, interfacing to “physics
data” simulations, identifying busiest channels, selecting
proper buffer sizes, determining the number of processors

and processing power required, determining data rates. and
many other decisions which are normally made using
analytical calculations or intuition.

At the outset of the simulation experiments the goals
of the exercise were spxified clearly:-

a) to develop simulation models of the following
functional sub-units of the switch-based DAQ system:-

(i) trigger system interface
(ii) test transmitter module
(iii) switch
(iv) switch control

$)
input time slot interchanger
output time slot interchanger

b) to develop a “system” model of an 8 by 8 switch
architecture, using each of the above functional sub-
components

c) to observe the behavior of the “system” model as
well as each of the functional sub-units when varying
certain subsets of the following parameters:-

;;) @klw rate
event distribution over switch output channels

(iii) event size
(iv) buffer depth in the input TSI’s
(v) buffer depth in the output TSI’s
(vi) switch packet size
(vii) test transmitter to input TSI data transmission rate
(viii) input TSI to switch data transmission rate
(ix) switch to output TSI data transmission rate

d) to perform analyses and produce meaningful results in
terms of summary plots and printouts

buffer wage sl the input TSI for p&on di8 ol~veats
,] ,; (,

* %Mutkqc
* ZManUuge

i 10 20
.subswnl&(Kb;)

50

This graph lhom the mean asd maximam amount
dhoffe~ wage for different salwent aivs

The results of the simulation experiments have been
repotted elsewhere [71, and so we shall not include them

here. However. one interesting plot worth including here is
one that shows the degradation of the switch when events
are distributed unevenly over output channels instead of on
a round robin basis. The plot shows how much more the
buffers overtlow in the TSI’s when events are disbibuted
unevenly.

3.2 Diagnostics

In the context of diagnosing a switch-based data
acquisition system, we desire to narrow the problem down
to a particular functional sub-unit as quickly as possible.
To accomplish this goal it was important that there he
some form of error detection facility built into the design,
however minimal. The switch project allowed for error
detection by the use of a set of diagnostic buffers which
were periodically checked by the system monitor to see if
any errors had been encountered.

Once an error was detected a fact gathering process tcmk
place, followed by a series of questions leading to a
conclusion about the possible origin of the error. To
enable an organized method of data gathering. question
asking and eventually decision making we implemented a
ruled based knowledge system using Nexpert. This system
allowed a series of decision trees (generated from the
knowledge elicited from the hardware designers during the
knowledge acquisition process) to be implemented in
software so that the system could pinpoint the most
probable origination point of a particular error.

Because of the bridge between Nexpert and Dataviews.
integration of the diagnostic facility into the existing user
interface system was easy and quick. Questions are asked
via the RPC mechanism and rudimentary deductions are
made. For example, to determine if a problem originates
before the switch or after the switch, the following sequence
of steps would take place:

1. An error was detected by the embedded code resident
on one of tbe modules. The embedded code was responsible
for updating status registers that were located in local dual
pated memory.

2. The system monitor. through the local monitors, are
periodically polIing each module and reading the rcsptive
status registers. The error is detected by the system monitor
which notifies the operator of the error condition.

3. The operator receives a error message through the
user interface, and then activates the diagnostic
system,which is fully integrated into the user interface.

4. The diagnostic system, which has the error, starts
working its way tbru the decision trees that were earlier
defined. The decision trees offer a path through the different
modules.The different modules are polled, only as needed,
and the diagnostic system starts narrowing the list of
possible originators of the error to a small subset.

5. The operator is then notified of the most logical
place to start tmubleshcoting. The expert system is able to
diagnose down to the board level.
If all nodes are “seeing” the problem, then the problem is

probably pre-switch or on the input to the switch itself,
whereas if only one channel is experiencing a problem (hen
the problem is post-switch or on the outputs of the switch
itself. Either way this simple rule has performed the fist

“binary chop” on our total DAQ system. At present. this is
the least developed part of the project, but still remains a
positive area for investigation and development.

Another possible path to error correction is the use of
the diignostic buffers that were included at the design phase
of the modules. These diagnostic buffers could be used to
look at the history of events that have been passed through
each module. The system included a way of selectively
dumping, into the diagnostic buffers, only header
information or all information including data.

3.3 Embedded Software

The embedded software was meant to be fast and
efficient. There was no need for a real-time operating
system to be installed on the modules, mainly because there
was to be only one task running. The embedded code for all
modules included a set of common functions:

a. boot program
h. downloading
c. message protocol over vme
d. status,for diagnotic purposes

The same executable code for these cOrnmoo functions
was downloaded to each the same type modules thereby
reducing unnecessary duplicate development. Very little
information was downloaded for configuration purposes
simply because much of the information needed to transfer
dam through the system is carried along with the data.

3.3.1 Embedded code on specific boards

Test Transmitter boards: main purpose was to simulate
a front end sub-detector system. The embed&d code on this
board included functions to generate a set of data that was
to flow through the system, with the basic header
information that the system needed to route the event
fragments to the proper destination level 3 farm processors.

Trigger System Interface (TRW) board: act as the
tigger supervisor combined with the trigger system. The
embedded code on this board would generate the bigger and
notify the test transmitters as well as the input TX’s at
predetermined time intervals. This triggering rate could bc
changed dynamicalIy via the message passing protocol from
the system monitor.

Input TSI boards: this module received the event
fragments f?om the Test Transmitters and fed them into the
switch on a packet by packet basis. The embedded code on
these boards was responsible for checking headers. receiving
trigger information and routing the data into the correct
buffers io preparation for “switching”.

Output TSI boards: this module received the event
fragments from the switch and fed them into Ihe appropriate
buffez in preparation for transmission to the level 3 farm as
a complete event. The embedded code on these boards was
responsible for sending the data, buffer by buffer, to the
level 3 farm (“event-building”). In our system the output

TSI also simulated the level three processor farm, which
required the maintenance of the event request link.

3.4 User Interface

The graphical user interface was developed to allow a
non-textual representation of the system,which we felt was
more intuitively understood. The interface was developed
using the graphic package DATAVIEWS. This package was
C based and consisted of two major areas of effort,

The look of the view itself was done using DVDRAW.
This allowed the developer to actually see the way the view
would look ,attach variables to the view and allow the
developer to see the layout of the view easily.

The view was controlled by a C program that was
responsible for drawing,updating and destroying each
view.This programming control is the DVTOOLS portion
of Dataviews. It allows a connection between the view and
the remote procedure call system,which collected
information from the real DAQ system or the simulation
system.
-

SWITCHERS
-

SW JOI

a!L,, AL
BANG”” E%ms

WEM SIZE DISlPlsUnON

l?iwe 3 Examole

Through use of a mouse the user could jump thm the levels
of view and quickly get an image of the system,while the
system was running. The user was also able to change
parameters, reset the system, and examine status statistics.

The graphical user interface was hierarchical in design
and implementation. The top view allows the user to select
such operations as simulations or system software, or to
reconfigure the system. Through use of the mouse or
keyboard the user could change parameters and send the
information to the system from tbe selected view.

The development of the User Graphical Interface was
started well before the design on many of the modules was

complete. This was possible because the system could be
designed.tested. and debugged using tbe simulation model as
a “true” system.

3.5 Remote Procedure Calls

The remote server and client programs used to write and
read from the SWITCH DAQ system were compiled and
linked with the skeleton XDR routines produced from a
program definition fde that was compiled with rpcgen. The
client and server stub routines interface with the RPC
library and effectively hide the network from the calling
programs. Several remote procedure calls were written for
initializing the SWITCH DAQ system by downloading the
embedded code, lookup tables and initialization of local
variables. Other programs make client calIs to read from the
various parts of the system for data display and diagnostics.

Conclusions

The prototype switch-based DAQ system has met the
performance objectives, both in terms of hardware and
software. In terms of integrated systems engineering, this
project has demonstrated the importance of having powerful
tcols and integrating them properly in order to ensure wise
design decisions are made at all phases of the development.
There is still a long way to go. but the goal of having
reliable DAQ systems in HEP experiments of the future
looks reachable.

Acknowledgements

The authors wish to gratefully acknowledge Mark
Bowden, Ed Barsotti and all members of the design team of
the Scalable Parallel Open Architecture Data Acquisition
System.

References

1. “A High-Throughput Data Acquisition Architecture
Based on Serial Interconnects”. M. Bowden. et al, IEEE
Transactions on Nuclear Science, Vol. 36. No. 1,
February 1989, ~760-764.

2. “Verilog-XL”,Cadence, LowellJviassachosetts.
3. “Simulation of a Macro-pipelined Multi-cpu Event

Processor for Use in Fastbus”, M.F.Letheren, A.
Marchioro, F Sloratb, CERN, Geneva, Switzerland

5. “Dataviews”, V.I. CORP,Amherst,Massachusetts.
6. “Nexpert”Neoron Data Inc.,F’alo Alto, California.
7. Simulating and Modeling of Data Acquisition Systems

for Future HEP Experiments, A.W.Bootb, M.Bowden,
EJ. Bartsotti, D.Walsh & D. Black, IEEE Transactions
on Nuclear Science.

